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Abhtict Stereoselective reduction of 1,3-bishomocubanone acetate 1 followed by mesylatlon 

leads to an eplmenc mixture of mesylates 3. Base induced homoketonlzatlon of the anti- 

epimer 3b affords tetracyclo[5.3.0.02.5 04,'ldecenone 4. 

Highly strained bridgehead cage alcohols of the cubane type are reactive substrates which under 

basic conditions give rise to a reglo- and stereospecific cage opening reaction1 (Scheme 1). The 

reglochemlstry of this homoketonlzatlon process is primarily determined by the relative thermo- 

dynamic stabilities of the conceivable cage opened products*. 
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However, this thermodynamic control may be disturbed if one of the three possible carbon-carbon 

bond cleavages leads to a carbanionlc intermedlate which 1s stablllzed by an adJacent carbonyl 

function3. An alternative possibility to enforce the homoketonizatlon to proceed in a 'contra 

thermodynamjc' direction would be a 1,3-through cage elimination reaction in an appropriately 

B-functionalized bridgehead cage alcohol (or acetate) with the general structures 4 and $ in 

which L is an efficient leaving group (Scheme 2). Assuming that the eliminative cage opening 

indeed takes the predicted course then the tetracyclic compounds Ej and D would arise. These 

structures are of particular interest as they contain two isolated orthogonal n-electron systems 

which are in close spatial proxlmlty due to the rlgidlty of the polycycllc skeleton5. 

This communication deals with the synthesis of a suitable substrate of the type t and its subse- 

quent cage opening. 
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Schemme 2 
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As starting material the 1,3+ishomocubyl acetate 1 was chosen (Scheme 3). This material IS readl- 

ly available from the Diels Alder adduct of cyclopentadiene and cyclopenten-1,3-dione by first 

acylation to the corresponding enol-acetate and subsequent photocyclization4. 

Scheme 3 
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In spite of the sensitive nature of the acetate function in the 1,3+ishomocubanone acetate J, 

the bridge ketone function could be selectively reduced by using either NaBHs in methanol or 

LiA1H(t-03u)s in diethyl ether. In either case a 5 1 mixture of epimenc alcohols ,2 was obtained 

in yields of 60 and 80X, respectively. Separation of these epimers could not be accomplished. 

Mesylation lnpyr~d~neproducedthecorrespond~ngmesylates lntheaforementioned ratio (yield 80%). 

Repeated crystallization from methanol afforded the maJor epimer analytically pure. Its 'H NMR 

spectrum did not allow an unequivocal structural assignment. On merely stcric grounds the forma- 

tion of '2~ as the predominant product from the reduction of 1 seems plausible. On the other hand, 

a participation of the acetate function in the complexation of the hydride reducing agent can be 

envisaged with the consequence of a stereoselective preference for the formation of the anti- 

isomer 2b6. An X-ray analysis of the maJor mesylate' unambiguously showed it to possess the anti- 

structure JIJ thus proving the anchimenc effect of the acetate function on the reduction process 

In this structure $ the mesylate group has the proper a?u~n-avctc parallel orientation with re- 

spect to the central C5-C6 bond which 1s to be cleaved in the through-bond fragmentation reaction'. 

The acetate 3b appeared to be highly reactive towards base. Upon treatment with sodium methoxlde __ 
in methanol at room temperature an almost instantaneous reaction took place leading to a single 



2809 

crystalline compound (yield 60%), m.p. 129-130" (sealed tube). On the basis of Its spectral prop- 

erties the tetracyclic structure 4 was asslgned (Scheme 4). In contrast, under identical condi- 

tions, the sgn-eplmer 23 did not undergo such a facile cage opening reaction, only the correspond- 

lng mesylate alcohol was obtained. This means that the through-cage elimination process is sub- 

Ject to stringent stereoelectronlc control and proceeds in a concerted manner'. 

Both the lH NMR and 13C NMR are particularly decisive in asslgnlng the structure as they show 

a relatively simple resonance pattern due to the high symmetry of 4. In the 'H NMR spectrum 

(COCIB) both the oleflne protons and bridge protons appear as a singlet at 66.20 and 61.95 ppm, 

respectively, while the remaining SIX cage protons are found as a multlplet between 62.7 and 

3.3 ppm. 

Scheme 4 
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shows the expected seven carbon signals at 6199.5 (s, C=O), 137.8 (d, 

61.2 (d), 53.5 (d), 43.5 (d), 36.8 (t). The C=O absorption at 6199.5 

high C=O absorption (1760 cm-') in the IR-spectrum proves the pres- 

ence of a cyclobutanone ring. The UV spectrum of 4 which exhibits a maximum at 204 nm (n-hexane, 

E 3200)', 1s of particular interest as it suggests the occurrence of substantial orbital inter- 

actlon between the two orthogonal n-electron systems. In contrast such an absorption in the low 

wave length region is absent in the UV spectrum of the closely related but less rigid tetracyclo- 

undecenone 51°. 

The alkenone 4 1s extremely volatile and reacts readily with moisture from the air to form an In- 

soluble hydrate. Currently, we are studying the chemistry of this particular n-electron system 

with emphasis on n-partlclpatlon between the two double bonds. 
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